Select one of the courses below to see what you are capable of today.
High-quality Practice Databricks-Generative-AI-Engineer-Associate Exam for Real Exam
2025 Latest itPass4sure Databricks-Generative-AI-Engineer-Associate PDF Dumps and Databricks-Generative-AI-Engineer-Associate Exam Engine Free Share: https://drive.google.com/open?id=1DjnLrmDiCZ8Xm1ZdeZDH5VV1KcaIi71L
To address the problems of Databricks Certified Generative AI Engineer Associate (Databricks-Generative-AI-Engineer-Associate) exam candidates who are busy, itPass4sure has made the Databricks Certified Generative AI Engineer Associate (Databricks-Generative-AI-Engineer-Associate) dumps PDF format of real Databricks Certified Generative AI Engineer Associate (Databricks-Generative-AI-Engineer-Associate) exam questions. This format's feature to run on all smart devices saves your time. Because of this, the portability of Databricks Certified Generative AI Engineer Associate (Databricks-Generative-AI-Engineer-Associate) dumps PDF aids in your preparation regardless of place and time restrictions.
Databricks Databricks-Generative-AI-Engineer-Associate Exam Syllabus Topics:
Topic
Details
Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
>> Practice Databricks-Generative-AI-Engineer-Associate Exam <<
Databricks Databricks-Generative-AI-Engineer-Associate Exam Torrent & Practice Databricks-Generative-AI-Engineer-Associate Mock
It is very necessary for a lot of people to attach high importance to the Databricks-Generative-AI-Engineer-Associate exam. It is also known to us that passing the exam is not an easy thing for many people, so a good study method is very important for a lot of people, in addition, a suitable study tool is equally important, because the good and suitable Databricks-Generative-AI-Engineer-Associate reference guide can help people pass the exam in a relaxed state. We are glad to introduce the Databricks-Generative-AI-Engineer-Associate certification study guide materials from our company to you. We believe our Databricks-Generative-AI-Engineer-Associate study materials will be very useful and helpful for you to pass the Databricks-Generative-AI-Engineer-Associate exam.
Databricks Certified Generative AI Engineer Associate Sample Questions (Q12-Q17):
NEW QUESTION # 12
A Generative AI Engineer is designing an LLM-powered live sports commentary platform. The platform provides real-time updates and LLM-generated analyses for any users who would like to have live summaries, rather than reading a series of potentially outdated news articles.
Which tool below will give the platform access to real-time data for generating game analyses based on the latest game scores?
Answer: B
Explanation:
* Problem Context: The engineer is developing an LLM-powered live sports commentary platform that needs to provide real-time updates and analyses based on the latest game scores. The critical requirement here is the capability to access and integrate real-time data efficiently with the platform for immediate analysis and reporting.
* Explanation of Options:
* Option A: DatabricksIQ: While DatabricksIQ offers integration and data processing capabilities, it is more aligned with data analytics rather than real-time feature serving, which is crucial for immediate updates necessary in a live sports commentary context.
* Option B: Foundation Model APIs: These APIs facilitate interactions with pre-trained models and could be part of the solution, but on their own, they do not provide mechanisms to access real- time game scores.
* Option C: Feature Serving: This is the correct answer as feature serving specifically refers to the real-time provision of data (features) to models for prediction. This would be essential for an LLM that generates analyses based on live game data, ensuring that the commentary is current and based on the latest events in the sport.
* Option D: AutoML: This tool automates the process of applying machine learning models to real-world problems, but it does not directly provide real-time data access, which is a critical requirement for the platform.
Thus,Option C(Feature Serving) is the most suitable tool for the platform as it directly supports the real-time data needs of an LLM-powered sports commentary system, ensuring that the analyses and updates are based on the latest available information.
NEW QUESTION # 13
A Generative Al Engineer is working with a retail company that wants to enhance its customer experience by automatically handling common customer inquiries. They are working on an LLM-powered Al solution that should improve response times while maintaining a personalized interaction. They want to define the appropriate input and LLM task to do this.
Which input/output pair will do this?
Answer: B
Explanation:
The task described in the question involves enhancing customer experience by automatically handling common customer inquiries using an LLM-powered AI solution. This requires the system to process input data (customer inquiries) and generate personalized, relevant responses efficiently. Let's evaluate the options step-by-step in the context of Databricks Generative AI Engineer principles, which emphasize leveraging LLMs for tasks like question answering, summarization, and retrieval-augmented generation (RAG).
* Option A: Input: Customer reviews; Output: Group the reviews by users and aggregate per-user average rating, then respond
* This option focuses on analyzing customer reviews to compute average ratings per user. While this might be useful for sentiment analysis or user profiling, it does not directly address the goal of handling common customer inquiries or improving response times for personalized interactions. Customer reviews are typically feedback data, not real-time inquiries requiring immediate responses.
* Databricks Reference: Databricks documentation on LLMs (e.g., "Building LLM Applications with Databricks") emphasizes that LLMs excel at tasks like question answering and conversational responses, not just aggregation or statistical analysis of reviews.
* Option B: Input: Customer service chat logs; Output: Group the chat logs by users, followed by summarizing each user's interactions, then respond
* This option uses chat logs as input, which aligns with customer service scenarios. However, the output-grouping by users and summarizing interactions-focuses on user-specific summaries rather than directly addressing inquiries. While summarization is an LLM capability, this approach lacks the specificity of finding answers to common questions, which is central to the problem.
* Databricks Reference: Per Databricks' "Generative AI Cookbook," LLMs can summarize text, but for customer service, the emphasis is on retrieval and response generation (e.g., RAG workflows) rather than user interaction summaries alone.
* Option C: Input: Customer service chat logs; Output: Find the answers to similar questions and respond with a summary
* This option uses chat logs (real customer inquiries) as input and tasks the LLM with identifying answers to similar questions, then providing a summarized response. This directly aligns with the goal of handling common inquiries efficiently while maintaining personalization (by referencing past interactions or similar cases). It leverages LLM capabilities like semantic search, retrieval, and response generation, which are core to Databricks' LLM workflows.
* Databricks Reference: From Databricks documentation ("Building LLM-Powered Applications," 2023), an exact extract states:"For customer support use cases, LLMs can be used to retrieve relevant answers from historical data like chat logs and generate concise, contextually appropriate responses."This matches Option C's approach of finding answers and summarizing them.
* Option D: Input: Customer reviews; Output: Classify review sentiment
* This option focuses on sentiment classification of reviews, which is a valid LLM task but unrelated to handling customer inquiries or improving response times in a conversational context.
It's more suited for feedback analysis than real-time customer service.
* Databricks Reference: Databricks' "Generative AI Engineer Guide" notes that sentiment analysis is a common LLM task, but it's not highlighted for real-time conversational applications like customer support.
Conclusion: Option C is the best fit because it uses relevant input (chat logs) and defines an LLM task (finding answers and summarizing) that meets the requirements of improving response times and maintaining personalized interaction. This aligns with Databricks' recommended practices for LLM-powered customer service solutions, such as retrieval-augmented generation (RAG) workflows.
NEW QUESTION # 14
A Generative Al Engineer is creating an LLM system that will retrieve news articles from the year 1918 and related to a user's query and summarize them. The engineer has noticed that the summaries are generated well but often also include an explanation of how the summary was generated, which is undesirable.
Which change could the Generative Al Engineer perform to mitigate this issue?
Answer: D
Explanation:
To mitigate the issue of the LLM including explanations of how summaries are generated in its output, the best approach is to adjust the training or prompt structure. Here's why Option D is effective:
* Few-shot Learning: By providing specific examples of how the desired output should look (i.e., just the summary without explanation), the model learns the preferred format. This few-shot learning approach helps the model understand not only what content to generate but also how to format its responses.
* Prompt Engineering: Adjusting the user prompt to specify the desired output format clearly can guide the LLM to produce summaries without additional explanatory text. Effective prompt design is crucial in controlling the behavior of generative models.
Why Other Options Are Less Suitable:
* A: While technically feasible, splitting the output by newline and truncating could lead to loss of important content or create awkward breaks in the summary.
* B: Tuning chunk sizes or changing embedding models does not directly address the issue of the model's tendency to generate explanations along with summaries.
* C: Revisiting document ingestion logic ensures accurate source data but does not influence how the model formats its output.
By using few-shot examples and refining the prompt, the engineer directly influences the output format, making this approach the most targeted and effective solution.
NEW QUESTION # 15
A Generative Al Engineer is building a system which will answer questions on latest stock news articles.
Which will NOT help with ensuring the outputs are relevant to financial news?
Answer: A
Explanation:
In the context of ensuring that outputs are relevant to financial news, increasing compute power (option B) does not directly improve therelevanceof the LLM-generated outputs. Here's why:
* Compute Power and Relevancy:Increasing compute power can help the model process inputs faster, but it does not inherentlyimprove therelevanceof the answers. Relevancy depends on the data sources, the retrieval method, and the filtering mechanisms in place, not on how quickly the model processes the query.
* What Actually Helps with Relevance:Other methods, like content filtering, guardrails, or manual review, can directly impact the relevance of the model's responses by ensuring the model focuses on pertinent financial content. These methods help tailor the LLM's responses to the financial domain and avoid irrelevant or harmful outputs.
* Why Other Options Are More Relevant:
* A (Comprehensive Guardrail Framework): This will ensure that the model avoids generating content that is irrelevant or inappropriate in the finance sector.
* C (Profanity Filter): While not directly related to financial relevancy, ensuring the output is clean and professional is still important in maintaining the quality of responses.
* D (Manual Review): Incorporating human oversight to catch and correct issues with the LLM's output ensures the final answers are aligned with financial content expectations.
Thus, increasing compute power does not help with ensuring the outputs are more relevant to financial news, making option B the correct answer.
NEW QUESTION # 16
A Generative Al Engineer is building a production-ready LLM system which replies directly to customers.
The solution makes use of the Foundation Model API via provisioned throughput. They are concerned that the LLM could potentially respond in a toxic or otherwise unsafe way. They also wish to perform this with the least amount of effort.
Which approach will do this?
Answer: A
Explanation:
The task is to prevent toxic or unsafe responses in an LLM system using the Foundation Model API with minimal effort. Let's assess the options.
* Option A: Host Llama Guard on Foundation Model API and use it to detect unsafe responses
* Llama Guard is a safety-focused model designed to detect toxic or unsafe content. Hosting it via the Foundation Model API (a Databricks service) integrates seamlessly with the existing system, requiring minimal setup (just deployment and a check step), and leverages provisioned throughput for performance.
* Databricks Reference:"Foundation Model API supports hosting safety models like Llama Guard to filter outputs efficiently"("Foundation Model API Documentation," 2023).
* Option B: Add some LLM calls to their chain to detect unsafe content before returning text
* Using additional LLM calls (e.g., prompting an LLM to classify toxicity) increases latency, complexity, and effort (crafting prompts, chaining logic), and lacks the specificity of a dedicated safety model.
* Databricks Reference:"Ad-hoc LLM checks are less efficient than purpose-built safety solutions" ("Building LLM Applications with Databricks").
* Option C: Add a regex expression on inputs and outputs to detect unsafe responses
* Regex can catch simple patterns (e.g., profanity) but fails for nuanced toxicity (e.g., sarcasm, context-dependent harm), requiring significant manual effort to maintain and update rules.
* Databricks Reference:"Regex-based filtering is limited for complex safety needs"("Generative AI Cookbook").
* Option D: Ask users to report unsafe responses
* User reporting is reactive, not preventive, and places burden on users rather than the system. It doesn't limit unsafe outputs proactively and requires additional effort for feedback handling.
* Databricks Reference:"Proactive guardrails are preferred over user-driven monitoring" ("Databricks Generative AI Engineer Guide").
Conclusion: Option A (Llama Guard on Foundation Model API) is the least-effort, most effective approach, leveraging Databricks' infrastructure for seamless safety integration.
NEW QUESTION # 17
......
We will give you free update for 365 days after purchasing Databricks-Generative-AI-Engineer-Associate study guide from us, that is to say, in the following year, you don’t need to spend extra money on update version, and the latest version for Databricks-Generative-AI-Engineer-Associate exam dumps will be sent to your email address automatically. Furthermore, Databricks-Generative-AI-Engineer-Associate exam dumps are high quality and accuracy, and they can help you pass the exam just one time. In order to strengthen your confidence to Databricks-Generative-AI-Engineer-Associate Study Guide, we are pass guarantee and money back guarantee, if you fail to pass the exam we will give you full refund, and there is no need for you to worry about that you will waste your money.
Databricks-Generative-AI-Engineer-Associate Exam Torrent: https://www.itpass4sure.com/Databricks-Generative-AI-Engineer-Associate-practice-exam.html
DOWNLOAD the newest itPass4sure Databricks-Generative-AI-Engineer-Associate PDF dumps from Cloud Storage for free: https://drive.google.com/open?id=1DjnLrmDiCZ8Xm1ZdeZDH5VV1KcaIi71L